Bounds for the rainbow connection number of graphs
نویسنده
چکیده
An edge-coloured graph G is rainbow-connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to makeG rainbowconnected. In this paper we show some new bounds for the rainbow connection number of graphs depending on the minimum degree and other graph parameters. Moreover, we discuss sharpness of some of these bounds.
منابع مشابه
Total $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملSome Results on the Maximal 2-Rainbow Domination Number in Graphs
A 2-rainbow dominating function ( ) of a graph is a function from the vertex set to the set of all subsets of the set such that for any vertex with the condition is fulfilled, where is the open neighborhood of . A maximal 2-rainbow dominating function on a graph is a 2-rainbow dominating function such that the set is not a dominating set of . The weight of a maximal is the value . ...
متن کاملRainbow connections for outerplanar graphs with diameter 2 and 3
An edge-colored graph G is rainbow connected if every two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted by rcðGÞ, is the smallest number of colors that are needed in order to make G rainbow connected. It was proved that computing rcðGÞ is an NP-hard problem, as well as that even deciding whether a graph has rcðGÞ...
متن کاملRainbow Connection Number and Connected Dominating Sets
Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by γc(G) + 2, where γc(G) is th...
متن کاملThe (strong) rainbow connection numbers of Cayley graphs on Abelian groups
A path in an edge-colored graph G, where adjacent edges may have the same color, is called a rainbow path if no two edges of the path are colored the same. The rainbow connection number rc(G) of G is the minimum integer i for which there exists an i-edge-coloring of G such that every two distinct vertices of G are connected by a rainbow path. The strong rainbow connection number src(G) of G is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discussiones Mathematicae Graph Theory
دوره 31 شماره
صفحات -
تاریخ انتشار 2011